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Abstract 

Forty-two hypothet ical  3 D nets are derived by apply-  
ing four  types of  t ransformat ions  (or combinat ions  
thereof)  to the previously described tr idymite group 
of  structures. Two novel t ransformat ions  are pro- 
posed,  one preserving the (hexagonal  or or thorhom-  
bic) symmetry  and another  converting the hexagonal  
symmetry  into or thorhombic .  Correspondingly ,  
groups of  hypothet ical  3D f ramework  structures are 
derived. The propert ies of  f rameworks  belonging to 
these groups are compared  and discussed. 

Introduction 

Following the enumera t ion  of  (4; 2)-connected 3D 
nets (this notat ion denotes f ramework  structures 
extended in three-dimensional  space with every 

0108-7673 / 90/100847- 09503.00 

f ramework  T atom being te t rahedral ly  coord ina ted  
by oxygen atoms,  where every oxygen a tom is shared 
between two T atoms) of  the tr idymite group 
(Bosmans & Andries,  1990), this paper  describes 
related structure types obtained by applying 
geometrical  t ransformat ions .  Examples  of  such 
geometrical  t ransformat ions  appl icable  to (4 ;2) -  
connected 3D nets a n d / o r  smaller  structural  subunits  
are (i) the sigma (tr) t raf isformation (Shoemaker ,  
Robson & Broussard,  1973), (ii) sl ipping schemes 
(Sato & Got tardi ,  1982) and (iii) the stellation, the 
t runcat ion and  the addi t ion (Smith, 1988). 

Detai led structual informat ion  on established 3D 
f ramework  structures and  their secondary  bui lding 
units [SBU, Meier  (1968)] can be found in the recently 
revised At las  o f  Zeol i te  Structure Types (Meier  & 
Olson, 1987) and in a comprehensive  review (Smith,  
1988). 

O 1990 International Union of Crystallography 



848 3D NETS RELATED TO THE TRIDYMITE GROUP 

In a previous report (Bosmans & Andries, 1990), 
two types of transformations were proposed: (i) the 
R 180 transformation rotates neighbouring hexagonal 
sheets by 180 ° parallel to (001) (the hexagonal xy 
plane) and (ii) the T2/3R transformation replaces 
all T2,, units (denoting two T atoms on a trigonal 
axis, connected across a mirror plane, with a T - O - T  
bond angle of 180 °) by single three-membered rings 
(S3R). The same concepts and notations will be used 
here. Unless otherwise stated, net numbers refer to 
nets described in that paper. In the third report 
(Andries, 1990) of a series of three successive papers 
of which the present is the second, a compilation is 
given of all enumerated nets and of all definitions, 
abbreviations and notations used. 

Firstly, two novel types of transformations that are 
specifically applicable to nets of the tridymite group 
will be described: the tridymite group-extended 
tridymite group (TET) transformation and the 
tridymite g roup-2T  orthorhombic (TO) transforma- 
tion. Furthermore, the 2T  orthorhombic-extended 
orthorhombic (OEO) transformation is based on the 
same principles as the TET transformation. We will 
apply then the TET, TO, T2/3R and R180 transfor- 
mations (or combinations thereof) to structures of 
the tridymite group. Finally, some properties of the 
resulting nets will be discussed. A complete systematic 
and crystallographic description of all theoretically 
possible (4; 2)-connected 3D nets is beyond the scope 
of this study but will be published in the future. 

In this way net 4 is converted into a net of the 
extended tridymite group, designated structure type 
28 [Figs. 6 (a l ) ,  (a2)] and enumerated by Bennett & 
Smith (1985) as their net 82a. Nets 3b, 4, 6b and 8 
are all converted into net 28 by the TET transforma- 
tion. As such, nets of the extended tridymite group 
can be derived from group 1 3D nets, as well as from 
group 2 3D nets of the tridymite group (the former 
are constructed from 2T trigonal cages symmetry- 
related by mirror planes parallel to the hexagonal c 
axis, the latter from 2T trigonal cages symmetry 
related by threefold axes). It should be noted that 
the trigonal columns in frameworks of the extended 
tridymite group are laterally connected in the same 
way as are the 2T trigonal cages in the respective 
nets of the tridymite group from which they have 
been derived (T2m units do not participate in lateral 
linkages). 

This transformation converts the 
(43)1(42.12)3(43.12)3 (3, 4)-connected 2D net of net 4 
[Fig. 14 of Bosmans & Andries (1990)] into the 
(4.6.12) 3-connected 2D net of net 28 (Fig. 2) by 
removing the on-axis T atoms [the notation 
(Ab.Cd)e(Fg.Hi)j.. .  is a net symbol denoting the 

(a) 

Geometrical transformations used for deriving novel 
framework topologies from nets of the tridymite group 

1. The extended tridymite group and the tridymite 
group- extended tridymite group (TET) transformation 

This transformation removes all Te,, units connect- 
ing neighbouring 2T trigonal cages (denoting poly- 
hedral cages with threefold symmetry and two on-axis 
oppositely oriented T nodes) along the trigonal axes 
and extends the cage (becoming an infinite trigonal 
column) by an infinite repetition of the horizontal 
stack sequence of the cage. The sequence 3-1(m)1-3 
[ l ( m ) l  is used to denote the T2m unit] is hereby 
reduced to 3(S)3 (denoting two three-membered 
horizontal stacks with an 'eclipsed' or 'cis' configur- 
ation). This transformation is visualized in Fig. 1 (a),  
where the T2m unit with its associated three- 
membered stacks (3MS) is converted into a pair of 
S-connected 3MS's. The conversion into a trigonal 
column for a chain of 2 T trigonal CSC cages [afo 
cage (Smith, 1988); the notation CSC is a shorthand 
notation for cage 1-3(C)3(S)3(C)3-1; C denotes a 
'staggered' or 'trans' configuration] connected along 
the trigonal axis by forming T2m units is represented 
in Fig. l (b) .  The column now has an infinite repetition 
of the 3(C)3(S)  stack sequence (or CS). 

. , ~ , ,  

r'r" i , j 

. ~  i I I 

l ~ t I I 

> r q,'-¢ 

~'~ ~afi 
,~ ' I I 

0 lr ,  o 
(b) 

Fig. 1. Visualizing how the TET transformation works. T atoms 
are represented by full circles and oxygen atoms (not shown) 
lie approximately in the middle between two connected T atoms 
or are not 2-connected. In (b) the TET-transformed column is 
constructed by connecting aft units (bold lines), which them- 
selves are constructed by linking T408 units (bold lines) across 
a trigonal axis. 
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geometry of  a 2D net: each T atom in the net is part 
of b A-membered rings, d C-membered r ings , . . . ;  if 
Ab. c d . . . = X  and Fg.Hi . . .=  Y, then XeYj means 
that the ratio of the number of type X T nodes to the 
number of type Y T nodes in the net is e/j; all letters 
represent integral values]. The TET transformation 
preserves the hexagonal a parameter, while the c 
repeat is reduced and TET-transformed 3D nets have 
an integral multiple of three T atoms in their unit 
cell: no T atoms on trigonal axes occur. 

Most extended nets have no channels of appreci- 
able dimension perpendicular  to the hexagonal c axis, 
because channel system A or B (formed between 
neighbouring hexagonal sheets in all frameworks of 
the tridymite group made of isolated 2T  trigonal 
cages) vanishes as a consequence of eliminating the 
T2m units. The TET transformation does not affect 
the aperture of the channels along the hexagonal c 
axis; on the contrary, in some cases a supplementary 
channel system along the symmetry axis is created 
[compare nets 19 [Fig. 15(b) of Bosmans & Andries 
(1990)] and 31 [Fig. 6(b3)]}. 

2. The 2 T orthorhombic group and the tridymite group- 
2 T orthorhombic (TO) transformation 

In all group 1 3D nets of the tridymite group, each 
2T  trigonal cage is linked to three adjacent cages to 
form a hexagonal sheet; two neighbouring cages are 
symmetry related by a mirror plane. This mode of 
connecting cages is visualized for the CSC cage in 
Fig. 3(a): the letters a, b and c refer to coplanar T 
atoms in planes parallel to the mirror planes between 
neighbouring cages. As represented in Fig. 3(a),  the 
CSC cage is linked to five other CSC cages (a to e: 
three in the sheet, one above and one below) to form 
a net of the tridymite group (simple net 4). 

Definition: An alternative orthorhombic way for 
connecting this type of  cage is represented in Fig. 
3(b). The letters a and b define planes 2 and 1 parallel 

2 8  

Fig. 2. The lateral connection of CS-type trigonal columns in net 
28. View along the hexagonal c axis. Colums are represented 
with full lines and their connections with dashed lines. T nodes 
are up (circle) or down (no circle). Oxygen atoms (not shown) 
lie approximately in the middle between two connected T atoms 
or not 2-connected. Note the hexagonal unit cell bounded by 
mirror planes and the position of the trigonal columns at x = 2/3, 
y = 1/3 and at x = 1/3, y = 2/3. 

to the respective mirror planes between neighbouring 
cages.  This leaves c and d available for connections 
in the other direction to form an orthorhombic sheet. 
A new set of mirror planes is thus formed in this net, 
i.e. perpendicular to planes 1 and 2 and parallel to 
edge d-d. A schematic drawing of the projection onto 
(001) (the orthorhombic xy plane; the orthorhombic 
c axis runs parallel to the trigonal axis of the 2T 
trigonal cages) for this type of sheet is given in Fig. 
4. Notice that the density of bonds in the y direction 
is higher than in the x direction. In Fig. 4, we denote 
the c-c and d - d  distances (of Fig. 3b) by F (far) and 
N (near), respectively. 

A 3D net is then constructed by connecting the 
sheets along z through the remaining e and f nodes. 
In this case, neighbouring sheets are symmetry related 
by translation along z: a simple orthorhombic 3D net 
is formed. In this particular 3D net, designated type 
47 (and in every 2T orthorhombic net in general), 
each 2T trigonal cage is linked to six others: four in 
the sheet, one above and one below. The bond density 
between neighbouring sheets is lower than in the x 
direction and comparable with the bond density 
between sheets in the corresponding nets of the 
tridymite group. The orthorhombic and hexagonal 
unit-cell parameters are related as follows (subscripts 
o and h denote orthorhombic and hexagonal param- 
eters respectively) (ao along x, bo along y): 

% is (slightly) higher than 2bo 

bo = ah/(2 COS 30 °) 

C O ~ C h . 

Notice that the 2D net in Fig. 4 is designated the 
(43.8)4(4.82)2(43)1 (3,4)-connected 2D net. Besides 

d 

b a 

C a 

c a 

a 

e 

Z 

! 

(a) 

1 2 
e 

ib a 

a 

i 
i 

a 

f 

Z 

X 

(b) 

Fig. 3. Connecting CSC cages to form (a) group 1 nets of the 
tridymite group and (b) 2T orthorhombic nets. T nodes lie at 
the intersections of lines and oxygen atoms (not shown) lie 
approximately in the middle between two connected T atoms 
or are not 2-connected. 



850 3D NETS RELATED TO THE TRIDYMITE GROUP 

the T nodes on the (original) trigonal axes, the 4- 
connected nodes also are part of three four-membered 
rings (in net 47, 71.4% of the T nodes are part of 
three S4R's; compare with 100% in net 4). The type 
47 structure can be made from the above type of 2D 
net connected across mirror planes. 

Related nets: Other 2T trigonal cages, belonging 
to the C(SC)r  series (r is zero or a positive integer), 
can also be assembled into 2T orthorhombic nets. 
Nets made of C ( r = 0 ) ,  CSCSC ( r = 2 )  and 
CSCSCSC ( r = 3 )  cages are designated stru.cture 
types 46, 48 and 49 respectively [Figs. 4 and 7(bl)].  
Nets constructed from cages with r = odd all have 
the same projection onto the xy plane as in Fig. 4 
(this type of cage has a mirror plane perpendicular 
to the trigonal axis, while cages with r - -0  or even 
have an inversion centre). 

The notations N and F (Fig. 4) do not always refer 
to 'near' and 'far', such as in cases where N N  and 
FF linkages are symmetrically equivalent (e.g. in 2T 
orthorhombic nets made of C(SC)r-type cages with 
r = 0 or even). In the latter case, the R 180 transfor- 
mation can be applied in a straightforward way, such 
as to framework types 46 and 48. The respective 
non-simple nets are designated structure types 46b 
and 48b. 

Because lateral bonds in the y direction are not 
symmetrically equivalent to those in the x direction, 

the constituent sheets of nets 46 to 49 probably cannot 
be rotated by (90 × f ) °  (where f is 1 or 3) to form a 
3D net. DLS refinements (Baerlocher, Hepp & Meier, 
1977) of the resulting non-simple nets were not per- 
formed. 

Neighbouring orthorhombic sheets are symmetry 
related by a mirror plane in structure types 46b, 47, 
48b and 49 and by inversion in nets 46 and 48. In all 
structure types 46 to 49, channels along the x and the 
z axes occur with a maximum aperture of eight-rings 
(the channel system along x is equivalent to channel 
system A present in all group 1 nets of the tridymite 
group constructed from isolated 2T trigonal cages; 
see Fig. 4 for the channel system along z). In nets 46 
and 48, the apertures along y are ten-rings, in types 
47 and 49 twelve-rings. In all types, the channel system 
intersects and is three-dimensional. The TO transfor- 
mation lowers the number of the largest channels in 
the net (i.e. channels along the y axis). In some cases, 
the transformation lowers the maximum channel 
aperture also {e.g. compare structure types 3 and 6 
[$12R, Fig. 15(a3) of Bosmans & Andries (1990)] 
with nets 46 and 48 (S10R)}. 

Application of the TO transformation to simple 
nets of the tridymite group results in simple 2T 
orthorhombic nets. It is furthermore obvious that 
non-simple nets can be constructed by stacking 
different sheet types onto each other along [001]. 

I II 

t i l l  I 
47A9 

Fig. 4. The 2T orthorhombic sheet made of CSC 2T trigonal 
cages. Cages are represented with full lines and different types 
of lines have been used for the symmetficaUy non-equivalent 
bonds connecting them. T atoms lie at the intersections of lines 
and oxygen atoms (not shown) lie approximately in the middle 
between two connected T atoms or are not 2-connected. Mirror 
planes and the orthorhombic unit cell are indicated. Figures are 
net numbers. 

3. The extended orthorhombic group and the 2T  
orthorhombic- extended orthorhombic (OEO) transfor- 
mation 

In some 2 T orthorhombic nets, the T2m units along 
z can be removed whereby the cages are converted 
into trigonal columns, in exactly the same way as was 
described for nets of the extended tridymite group. 
A schematic representation of the projection of these 
structures onto the xy plane is as in Fig. 4, with the 
on-axis T nodes removed. 

This transformation converts the 2D net represen- 
ted in Fig. 4 into the (4.6.8)2(6.82)1 3-connected 2D 
net [Fig. 7(b6)]. Structures derived from this type of 
net are A1PO4-21 [ATF (Bennett, Cohen, Artioli, 
Pluth & Smith, 1985)] and AIPOa-EN3 (Bennett, 
Dytrych, Pluth, Richardson & Smith, 1986). A system- 
atic enumeration of structures made from this type 
of 2D net with the orientation of the T nodes being 
either up or down has not yet been done. A limited 
number of 3D nets built up with this type of 2D net 
were described by Smith (1979). 

The OEO transformation does not affect the ortho- 
rhombic a or b dimension but the c repeat is reduced. 
Nets of the extended orthorhombic group exhibit the 
lowest bond density in the x direction. 

The OEO transformation applied to nets 46b, 47, 
48b and 49 results in one and the same net, designated 
structure type 52 [Fig. 7(b6)]. 
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Because the TO transformation is only concerned 
with lateral linkages of the trigonal units and does 
not in any way affect the stack sequence of the trigonal 
columns, it can be applied to structures of the exten- 
ded tridymite group, just as well as to structures of 
the tridymite group. In this way, net 52 can be derived 
from net 28 by the TO transformation. 

The maximum channel dimension is lower for 
extended orthorhombic nets than for the correspond- 
ing frameworks in the extended tridymite group {e.g. 
compare nets 28 (S12R) and 35 [S18R, Fig. 6(b5)] 
with nets 52 (S8R) and 53 [S12R, Fig. 7(b7)] respec- 
tively}. 

The systematic enumeration of 3D nets derived from 
structures of the tridymite group by applying 

geometrical transformations 

Novel nets can be derived systematically by the appli- 
cation of the following transformations to nets of the 
tridymite group: (i) R180, (ii) T2/3R, (iii) TET and 
(iv) TO. The OEO transformation is applicable to 2T 
orthorhombic nets only and the resulting nets can be 
regarded as being derived from structures of the 
tridymite group by the application of the TET and 
the TO transformations. Net numbers are compiled 
in Table 1. 

Some supplementary nets, besides those in Table 
1, were derived (schematic drawings of these nets are 
given in Figs. 6 and 7): 

(i) Net 34 can be obtained by alternating unit cells 
of nets 31 and 32 in the [001] direction. 

(ii) Nets 35 to 37 belong to the extended (group 
1) tridymite group and are made of trigonal columns 
3(LH)6(H)3(S) ,  3 (H)6(LH)6(L)6(H)3(S)  and 
3(H)6(L)6(LH)6(L)6(L)6(H)3(S)  respectively [see 
Bosmans & Andries (1990) for notation]. The corre- 
sponding group 1 nets of the tridymite group from 
which they are derived are constructed from group 
B 2T trigonal cages (denoting 2T trigonal cages 
constructed from 3MS's and 6MS's without any S3R 
perpendicular to the trigonal axis) with an S6R per- 
pendicular to the trigonal axis. The latter nets were 
mentioned in the paper of Bosmans & Andries (1990), 
but no DLS refinements were performed. 

(iii) Nets 38 and 39 are derived from nets 36 and 
37 respectively by replacing the S6R's perpendicular 
to the trigonal axes by D6R's (by a 0(002 ) transfor- 
mation). 

(iv) Net 53 is derived from net 35 by the TO 
transformation. 

(v) The net obtained from structure type 52 by 
applying o --1 transformations at the mirror planes 
perpendicular to the y axis between neighbouring 
trigonal colums is designated structure type 61. This 
net was not enumerated previously (Smith, 1977); 
using the terminology of the author, it is constructed 
from 63 (simple hexagonal) 2D nets with sequences 

Table 1. The systematic derivation of hypothetical 3 D 
nets from structures of the tridymite group by applying 

geometrical transformations 

Figures are net numbers .  Co lumns  2 to 5 are der ived f rom co lumn 
1 (Bosmans & Andries,  1990) and columns 6 and 7 f rom column 
5. Nets in co lumn 6 can also be der ived from column 3, and those 
in co lumn 7 f rom co lumn 4 by the TO t ransformat ion .  Slashes 
denote  impossible  t ransformat ions .  

(1) (2) (3) (4) 
Net  

number  R180 T2/3R T E T  

Group 1 
l / 40 / / 
2 / 41 / / 
3 3b / / 46 
3b 3 42 28 46b 
4 4b 43 28 47 
5 / 66 29 / 
6 6b / / 48 
6b 6 65 28 48b 
7 / 67 30 / 
8 8b 64 28 49 

11 / 40 41 / 
12 12b 42 43 50 
13 13b 43 64 51 
19 / 44 31 / 
20 / 45 32 / 
21 / 68 31 / 
22 / 70 32 / 
23 / 62 / / 
24 / 63 / / 
25 / 71 33 / 

Group 2 
55 55b 17 / / 
60 60b 17 / / 

(5) (6) (7) 

TO T2/3 R 0 EO 

/ 
/ 
/ 
54 
18 
/ 
/ 

72 
/ 
69 
/ 
54 
18 

/ 
/ 
/ 
52 
52 
/ 
/ 
52 
/ 
52 
/ 
18 
69 
/ 
/ 
/ 
/ 
/ 
/ 

CCCCCC and CCSCCS in the hexagons [Fig. 
7(b8)]. When the mirror planes perpendicular to x 
in structure type 61 are replaced by c glides, the 
tridymite net (Gibbs, 1926) is obtained. 

Some remarks concerning the enumerated 3D nets 
should be made (see Figs. 6 and 7 for representa- 
tions): 

(i) AIPO4-5 (AFI) (Bennett, Cohen, Flanigen, 
Pluth & Smith, 1983) and nets 28 and 52 can all be 
made of the aft unit [Fig. l(b),  6 = 6 ,  65 (Smith, 
1988)], which itself can be derived from the afo unit 
(Smith, 1988) (T~4028 CSC 2T trigonal cage) by 
removing the T atoms on the trigonal axis (the nota- 
tion 6 = 6 denotes two parallel S6R's interlinked with 
three bonds around the threefold axis; the notation 
65 is a face symbol denoting a polyhedral cage 
bounded by five six-rings). 

(ii) Nets derived from structures of the tridymite 
group by the T2/3R transformation all have the same 
schematic projection onto the hexagonal (001) plane 
as their respective analogues in the tridymite group, 
with 7"2,, units being replaced by S3R's; their unit 
cell a parameter is almost identical, but their c repeat 
is smaller. This reduction can be very striking if the 
respective net of the tridymite group is constructed 
from group C 2T trigonal cages [e.g. net 13 (Bosmans 
& Andries, 1990) versus net 43]. The number of T 
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atoms per unit cell is an integral multiple of three for 
this type of T2/3R-transformed nets. 

(iii) A similar line of thought as under (ii) can be 
made for nets that are derived from 2 T orthorhombic 
structures by the T2/3R transformation. The reduc- 
tion of the c repeat is striking by comparing for 
example structure types 51 and 18. 

(iv) All hexagonal nets made of 
[(S)3(C)3]p(LH)3-type trigonal columns (p is a 
positive integer) can be derived from nets of the 
tridymite group by the T2/3 R transformation and /o r  
the TET transformation (nets 42, 43, 65 and 64 have 
p - -1  to 4 respectively). Similarly, all orthorhombic 
nets constructed from the same type of trigonal 
column can be derived from 2T orthorhombic nets 
by the T2/3R and /or  the OEO transformation (nets 
54, 18, 72 and 69 have p -- 1 to 4 respectively). 

(v) No hypothetical nets of the extended tridymite 
group, derived from group 2 nets of the tridymite 
group, have been identified so far. 

Some topological relations between several nets 
derived are given in Fig. 5. From this figure it is 
obvious that a simple relation exists between the 
topology of Linde Q of Breck & Acara (1961) [net 4: 
Andries, Bosmans & Grobet (1990); structure-type 
code BPH (Harvey & Meier (1989)] and the tridymite 
structure (Gibbs, 1926): indeed, the 3-connected 2D 
net in net 28 (derived from net 4 by the TET transfor- 
mation, Fig. 2) converts into the 6 3 3-connected 2D 
net present in tridymite (simple hexagonal 2D net 
with alternately up and down tetrahedra) by applying 
o "-~ transformations at the mirror planes symmetry- 
relating neighbouring hexagons. 

TO 
< 

R180 TO 
46 ~ > .46b < 

I~ 48 < 48b 
-* RI80 

L49 < 
TO 

42 

T2/3R 
RI80 

4b 

43 

8.J < > 8b 
RI80 tr ire 

Table 2. Secondary building units for the 3D nets 
derived from structures of the tridymite group by apply- 

ing the transformations of Table 1 

In those cases where more than one structural subunit is given, no 
attempt was made to characterize one single SBU [according to 
the original definition by Meier (1968)]. The notation 'i' (i integer) 
designates a single i-membered ring; see Bosmans & Andries (1990) 
for the other designations. 

SBU Net  n u m b e r s  

3 17 
4 28, 30, 31, 32, 33, 34, 39, 52 

1 -= 3 46b 
3 + 4  18,35,41,42,43,44,45,53,62,  

64, 65, 67, 68, 69, 70, 71, 72 
1-=6 47 
3 + 6 40, 54, 63, 66 
4 + 6  29,36,37,38 

1---6-=3 48b 
1-=6+3 50 
1=-6-=6 49 

1---6=-6+3 51 

The secondary building units for all nets derived 
from structures of the tridymite group by applying 
the transformations of Table 1 are compiled in Table 
2. Net 61 can be built from the 4 (i.e. the S4R) and 
7"408 SBU's, the latter unit is the repetitivity unit of 
the single crankshaft chain (Fig. lb).  

Schematic representations for nets 28, 29, 31, 32, 
35 and 44 are given in Fig. 6 and important crystallo- 
graphic data for structure types 28 to 32, 35, 44 and 
47 are given in Table 3. Refinement of the unit-cell 
parameters and the atomic positions was done with 
DLS (Baerlocher, Hepl~ & Meier, 1977), assuming 
T-O distances of 1.68 A [calculated for an Si/A1 = 
1.0 framework according to Ribbe & Gibbs (1969)] 
and O-O and T - T  distances calculated according to 
an ideal O - T - O  tetrahedral angle and a mean T-O-T  
angle of 140 ° . In some cases, the agreement factor 
was lowered by permitting the T-O distances to vary 
between the values for pure Si-O and A1-O bonds. 
Space groups P62m (net 28), Pmmm (net 47) and 
P321 (other nets) were assumed. 

Schematic projections onto the hexagonal or 
orthorhombic (001) plane for all nets enumerated can 
be found in Figs. 4, 6 and 7. Structural characteristics 
for all nets [repetition sequence of the trigonal 
columns and reference to a schematic representation 
of the projection onto (001)] can be found in Table 4. 

TO 

T2/3R TO 
54 < 50 < 

OEO 1 

T2/3R 
51 > 18 < 

42 

T T2/JR 

2 TET > 43 

I RI 80 1 b 

TO 

Fig. 5. Some topological relations between nets derived from 3D 
nets of the tridymite group. Figures are net numbers. 

Some specific properties 

Framework structures of the extended tridymite group: 
All differences in properties for frameworks of the 
extended tridymite group and their analogues of the 
tridymite group will be related to the effect of remov- 
ing the T2 units on the trigonal axes. Because struc- 
tures of the extended tridymite group do not exhibit 
a sheet-like character, their (framework) density is 
consistently higher than that of their corresponding 
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T a b l e  3. Crystallographic data for  some 3 D nets derived f rom group 1 nets o f  the tridymite group 

MSG = maximum space-group symmetry; TUC = number of  tetrahedral atoms in the unit cell; IT = number of  non-equivalent tetrahedral 
atoms for MSG; FD = framework density (number of  tetrahedral atoms per unit volume of 1000 A,3); Vf = void fraction (g cm-3), 
calculated according to the experimentally derived relation (Breck, 1973); Vy = ( -0 .0375FD)+0 .975  R F =  established materials with 
the framework structure described; REF = reference to the first description of  the net topology; N designates the sequence 3( C)3(S)3( C)3. 

Net Repetition a b c 
number sequence MSG TUC IT (/~,) FD Vf RF REF 

28 CS P63/mcm 24 1 14-04 9.50 14-8 0.42 / (1) 
29 SSCSC P62m 30 3 12.52 11.41 19.4 0.25 / / 
30 SSSCSC P62m 36 3 13.20 13.85 17-2 0.33 / / 
31 3(H)6(H)3 P6/mmm 24 2 16.12 7.39 14.4 0.43 / / 
32 3(H)6(L)6(H)3 P6/mmm 36 2 16.68 9.94 15.0 0-41 / / 
35 3 (LH)6 (H)3  P63/mcm 48 2 17.01 13-85 13.8 0.46 / / 
44 3(H)6(H)3(LH)3 P6/mmm 30 3 15.52 9.37 15.3 0.40 / / 
47 1-N-l(m) Pmmm 28 5 17.43 7.19 12.89 17.3 0.32 / / 

Reference: (1) Bennett & Smith (1985). 

~ " ' ~ ' ~ '  t .  ], ," . .  

, 

t v x , .~ .  

. ~ , ~  (a l )  (a2) ~ . ~  

~ , ~ - ~  , . .  

I f4--~ ~ ( a 3 )  
'~,-'~._..)',I "" 

28 28 29 2 9 , 3 0  

,'\ ,,,x x/'~'- 7~ * ' x / X  
? , -  -fr-k(-~ y--; 
'.' ~c" ';--¥ \t" '¢ 

c-~-_ _= ~, k" _~) 

i ~ i i I ' 
,~ ' ,  ,V-+,,K ) \  
+" ~->-~., ~: - < ~  
V " . "  XL_ 2 ~ %/ ' /  

(b l )  
31 

' - ~  I 

k . - ~  

t.7,A~_A~f.~. (b4) 

35 

.', .'..~-~, ~.~, v" " r ~  -~-  
n r -  ~,,i7~, - ~ t - r " t  

r...#~ ,, -<,~>.., i 
, ~ - ~ . .  -~-~ 

'¢ "¢ "~--v v v 

A ~, k-A .t./,, 

(b2) (b3) 

32 3 1 , 3 2 , 3 3 , 3 4  

. / c ' _  . r - .  

35 44 4 4 , 4 5 , 6 8 , 7 0 , 7 1  

Fig. 6. Schematic representations for some nets derived from nets of  the tridymite group by applying geometrical transformations. Each 
time, two laterally connected trigonal columns and the projection of  the net onto the hexagonal (001) plane have been drawn: 
(a l  to a4) nets derived by the TET transformation from group 1 nets of  the tridymite group made of  group A 2T trigonal cages; 
(bl  to b5) nets derived by the TET transformation from group 1 nets of  the tridymite group made of  group B 2T trigonal cages and 
(cl and c2) net 44. Figures are net numbers. T atoms are represented by squares whose size is proportional to the distance from the 
eye; oxygen atoms (not shown) lie approximately in the middle between two interconnected T atoms or are not 2-connected. (Chem-X, 
developed and distributed by Chemical Design Ltd, Oxford, England.) 
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analogues in the tridymite group. On the other hand, 
since they do not contain the inflexible 1-1 units, they 
exhibit a higher thermal stability. 

2 T orthorhombic framework structures: 2 T ortho- 
rhombic framework structures exhibit a higher 
framework density than their corresponding 
analogues in the tridymite group. The thermal stabil- 
ity of 2 T orthorhombic framework structures will be 
similar to (or will be slightly better than) that of their 
analogues in the tridymite group because of their 
higher framework density. Because of the lower sym- 
metry of the T2 unit in the 2 T orthorhombic nets, the 
295i NMR and the IR spectra might not be as distinct 
as for frameworks of the tridymite group (Bosmans 
& Andries, 1990). 2T orthorhombic nets will also 
exhibit a sheet-like character. 

Extended orthorhombic framework structures: Nets 
belonging to the extended orthorhombic group also 
have a higher framework density than the correspond- 
ing structures in the extended tridymite group. 

The TET, TO and OEO transformations will 
increase the framework density [approximate values 
(g cm -3) in brackets after net numbers]: 

3b, 4, 6b, 8 (12.7-14.3) [,o 
46b, 47, 48b, 49 (14.0-17.0) 

T E T  

O E O  

, 28 ( 1 4 . 8 )  

, 52 (>17"0). 

D i s c u s s i o n  

Novel framework topologies can be enumerated by 
the application of three classes of transformations to 
3D nets constructed from trigonal columns: 

(i) transformations that change the stack sequence 
of the trigonal columns in the net but that do not 
alter the nature of their lateral connections: the sym- 
metry of the net is preserved; 

(ii) transformations that do not alter the stack 
sequence of the trigonal columns in the net but that 
do change the nature of their lateral connections; in 
the most general case, the symmetry of the net is not 
preserved, unless in those cases where the transforma- 
tion in itself preserves the symmetry [e.g. (a) the 
transformation of net 82a of Bennett & Smith (1985) 
into the tridymite net (Gibbs, 1926); (b) some novel 
hypothetical nets can be derived from structures of 
the tridymite group by inserting an S4R between 
every two adjacent 2T trigonal cages in the same 
hexagonal sheet]; 

(iii) transformations that alter the stack sequence 
of the trigonal columns as well as their lateral connec- 
tions; in the most general case, the symmetry of the 
net is not preserved. 

The TET and OEO transformations belong to class 
(i) and the TO transformation belongs to class (ii). 

At this time, no materials with framework structures 
belonging to the extended tridymite group, the 2T 
orthorhombic group or the extended orthorhombic 
group have been established. 

(a) H e x a g o n a l  ne t s  

I 2 3 7 

, , , 2 - 

(b) O r t h o r h o m b i c  n e t s  

1 2 3 4 5 6 7 8 

18 ,69  52 53 61 
X 

46,48 50 51 54,72 

,Y 

Fig. 7. Schematic projections onto the hexagonal (a) or the orthorhombic (b) (001) plane for all hypothetical nets that were not 
represented in Figs. 4 or 6. Small figures are net numbers. Unit cells are indicated. In (b6) mirror planes are represented. In (b6) 
and (b8) up (circle) and down (no circle) tetrahedra are indicated. See Table 4 for supplementary information on the individual nets. 
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Table 4. Structural information on all nets derived 

Neighbouring trigonal columns are symmetry related by mirror 
planes parallel to the column axis, except in net 17 where they are 
symmetry related by trigonal axes. Nets that cannot be constructed 
from isolated trigonal columrrs (neighbouring columns share faces 
and/or  edges) are indicated by *. 

Net Projection 
number Repetition sequence onto (001) 

17 3(LH)3(S) Fig. 7(a7) 
18 3(C)3(S)3(C)3(LH)3(S) Fig. 7(b5) 
28 3(C)3(S) Fig. 6(a2) 
29 3(C)3(S)3(S)3(C)3(S) Fig. 6(a4) 
30 3(C)3(S)3(S)3(S)3(C)3(S) Fig. 6(a4) 
31 3(H)6(H)3(S) Fig. 6(b3) 
32 3(H)6(L)6(H)3(S) Fig. 6(b3) 
33 3(H)6(H)3(S)3(H)6(L)6(H)3(S) Fig. 6(b3) 
34 [3(H)6(H)3(S)]23(H)6(L)6(H)3(S) Fig. 6(b3) 
35 3(LH)6(H)3(S) Fig. 6(b5) 
36 3(H)6(LH)6(L)6(H)3(S) Fig. 7(a6) 
37 3(H)6(L)6(LH)6(L)6(L)6(H)3(S) Fig. 7(a6) 
38 3(H)6(LH)6(LH)6(L)6(H)3(S) Fig. 7(a6) 
39 3(H)6(L)6(LH)6(LH)6(L)6(L)6(H)3(S) Fig. 7(a6) 
40 3(LH)3(S) Fig. 7(al) 
41 3(S)3(LH)3(S) Fig. 7(al) 
42 3(C)3(LH)3(S) Fig. 7(a2) 
43 3(C)3(S)3(C)3(LH)3(S) Fig. 7(a3) 
44 3(H)6(H)3(LH)3(S) Fig. 6(c2) 
45 3(H)6(L)6(H)3(LH)3(S) Fig. 6(c2) 
46 1-3(C)3-1 Fig. 7(bl) 
46b 1-3(C)3-1(m)1-3(C)3-1 Fig. 7(bl) 
47 1-3(C)3(S)3(C)3-1 Fig. 4 
48 1-[3(C)3(S)]23(C)3-1 Fig. 7(bl) 
48b 1-[3(C)3(S)]23(C)3-1(m)1 Fig. 7(bl) 

-[3(C)3(S)]23(C)3-1 
49 1-[3(C)3(S)]33(C)3-1 Fig. 4 
50 1-3(C)3(LH)3(S)3(C)3-1 Fig. 7(b2) 
51 1-3(C)3(S)3(C)3(LH)3(S)3(C)3(S)3(C)3-I Fig. 7(b3) 
52 3(C)3(S) Fig. 7(b6) 
53 3(LH)6(H)3(S) Fig. 7(b7) 
54 3(C)3(LH)3(S) Fig. 7(b4) 
61" 3(C)3(S) Fig. 7(b8) 
62* 3(H)6(H)3(LH)3(S) Fig. 7(a5) 
63* 3(H)6(L)6(H)3(LH)3(S) Fig. 7(a5) 
64 [3(C)314(LH)3(S) Fig. 7(a3) 
65 [3(C)313(LH)3(S) Fig. 7(a2) 
66 3(C)3(S)3(S)3(C)3(LH)3(S) Fig. 7(a4) 
67 3(C)3(S)3(S)3(S)3(C)3(LH)3(S) Fig. 7(a4) 
68 3(H)6(H)a(s)3(H)6(H)3(LH)3(S) Fig. 6(c2) 
69 [3(C)314(LH)a(s) Fig. 7(b5) 
70 3(H)6(L)6(H)3(S)3(H)6(L)6(H)a(LH)3(S) Fig. 6(c2) 
71 3(H)6(H)3(S)3(H)6(L)6(H)3(LH)3(S) Fig. 6(c2) 
72 [3(C)313(LH)2(S) Fig. 7(b4) 

All hexagonal 3D nets are constructed from 
trigonal columns and a systematic enumeration and 
classification of such nets has been carried out 
(Andries, 1990). 
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Abstract 

Hexagonal three-dimensional framework structures 
are constructed from trigonal columns. When two 

0108-7673/90/100855-14503.00 

types of trigonal column are distinguished, all 
hexagonal 3D framework structures known to date 
can be classified in the lateral connection of trigonal 
columns (LCTC) group. Also, orthorhombic 3D nets 
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